Transcription through 8-oxoguanine in DNA repair-proficient and Csb(-)/Ogg1(-) DNA repair-deficient mouse embryonic fibroblasts is dependent upon promoter strength and sequence context.
نویسندگان
چکیده
Cells from Cockayne syndrome patients are characterized by a deficiency in transcription-coupled repair (TCR) of UV-induced lesions. These cells have also been shown to be sensitive to oxidative stress and defective in TCR of some oxidative lesions. Because some discrepancies about this pathway have been recently reported in the literature, we describe here a system that allows us to analyze the effect of a unique 8-oxoguanine (8-oxoG) lesion on gene transcription in vivo. We have constructed nonreplicative shuttle vectors containing a single 8-oxoG in the transcribed strand of the luciferase reporter gene. We have positioned this unique lesion in different sequence contexts and we have tested the effect of two promoters with different transcriptional strength on the level of transcriptional bypass/pause due to the presence of the lesion. When we transfected DNA repair-deficient mouse cell lines with these shuttle vectors, we found a approximately 50% decrease in relative luciferase activity in Ogg1(-/-) and Csb(-/-) embryonic mouse cell lines. In Csb(-/-)/Ogg1(-/-) cells, this decrease was even more important achieving eventually up to 90% inhibition of luciferase expression depending upon the promoter strength and the position of the lesion. These results show clearly that a unique 8-oxoG exhibits different effect on gene expression depending upon the nucleotidic sequence around it and needs the wild-type activities of Csb and Ogg1 proteins to be fully repaired.
منابع مشابه
8-Oxoguanine-mediated transcriptional mutagenesis causes Ras activation in mammalian cells.
8-Oxoguanine (8OG) is efficiently bypassed by RNA polymerases in vitro and in bacterial cells in vivo, leading to mutant transcripts by directing incorporation of an incorrect nucleotide during transcription. Such transcriptional mutagenesis (TM) may produce a pool of mutant proteins. In contrast, transcription-coupled repair safeguards against DNA damage, contingent upon the ability of lesions...
متن کاملOGG1-DNA interactions facilitate NF-κB binding to DNA targets
DNA repair protein counteracting oxidative promoter lesions may modulate gene expression. Oxidative DNA bases modified by reactive oxygen species (ROS), primarily as 7, 8-dihydro-8-oxo-2'-deoxyguanosine (8-oxoG), which is repaired by 8-oxoguanine DNA glycosylase1 (OGG1) during base excision repair (BER) pathway. Because cellular response to oxidative challenge is accompanied by DNA damage repai...
متن کامل8-Oxo-7,8-dihydroguanine in DNA does not constitute a barrier to transcription, but is converted into transcription-blocking damage by OGG1
The common DNA base modification 8-oxo-7,8-dihydroguanine (8-oxo-G) affects the efficiency and fidelity of transcription. We constructed plasmid substrates carrying single 8-oxo-G residues, specifically positioned in the transcribed or the non-transcribed DNA strands, to investigate their effects on the expression of an EGFP reporter gene and to explore the role of base excision repair in the m...
متن کاملTuberin regulates the DNA repair enzyme OGG1.
The tuberous sclerosis complex (TSC) is caused by defects in one of two tumor suppressor genes, TSC-1 or TSC-2. The TSC-2 gene encodes tuberin, a protein involved in the pathogenesis of kidney tumors, both angiomyolipomas and renal cell carcinomas. We investigated a potential role for tuberin in regulating a key DNA repair pathway. Downregulation of tuberin in human renal epithelial cells using...
متن کامل8-oxoguanine DNA glycosylase-1 augments proinflammatory gene expression by facilitating the recruitment of site-specific transcription factors.
Among the insidious DNA base lesions, 8-oxo-7,8-dihydroguanine (8-oxoG) is one of the most abundant, a lesion that arises through the attack by reactive oxygen species on guanine, especially when located in cis-regulatory elements. 8-oxoG is repaired by the 8-oxoguanine glycosylase 1 (OGG1)-initiated DNA base excision repair pathway. In this study, we investigated whether 8-oxoG repair by OGG1 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mutagenesis
دوره 22 5 شماره
صفحات -
تاریخ انتشار 2007